Data Mining

Das einundzwanzigste Jahrhundert im Datenkorsett

Jun.-Prof. Alexander Markowetz

Rheinische Friedrich-Wilhelms-Universität Bonn

Themen

- Teil 1: Technik
 - Data Mining
 - Suchmaschinen
- Pause
- Teil 2: Gesellschaft
 - Datenschutz als Sozialer Umweltschutz
 - Automatisierte Entscheidungen
 - Bei-Spiele

Data Mining / weitester Sinn

- Versuch Daten eine Bedeutung abzugewinnen
- Erkenne Trends und Muster
- Auffällig Daten (sog. Outlier)
- Vorhersage zukünftiger Events
- Aussagen über zukünftige Daten

Data Mining / weitester Sinn

- Präzise definierte Methoden
 - Classification
 - Regression
 - Clustering
 - k-NN
 - • •

- Gesamt Prozess nur unscharf def.
- Welche Methode?
- Auf welchen Daten?
- Problem wie modelliert?

21 Jh. Kaffeesatzlesen

Selbst Mathe Hilft

- Methoden der Statistik
- Finde Trends und Zusammenhänge

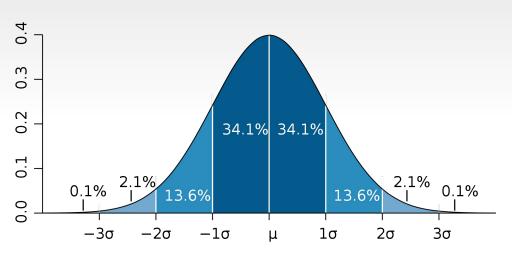
- Korrelation
- Verteilungen

Korrelation

Hängen Daten miteinander zusammen?

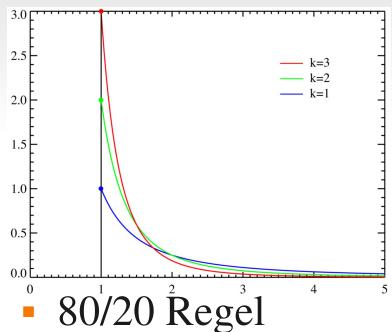
Kausale Zusammenhänge

- Korrelation zeigt das Dinge zusammenhängen
- Aber nicht notwendigerweise direkt
- Vielleicht gibt es auch gemeinsame Ursachen


Falsche Zusammenhänge

- Größere Leute verdienen mehr
- Je mehr Lärm im Haus, desto dümmer die Kinder
- Rauchen schadet Ihrer Intelligenz
- Kreative haben mehr Sex
- Glückliche Menschen sind gesünder
- Senkung der Arbeitslosigkeit erfordert starkes
 Wirtschaftswachstum

(aus versch. Tageszeitungen, laut Wikipedia)


Wahrscheinl.-Verteilungen

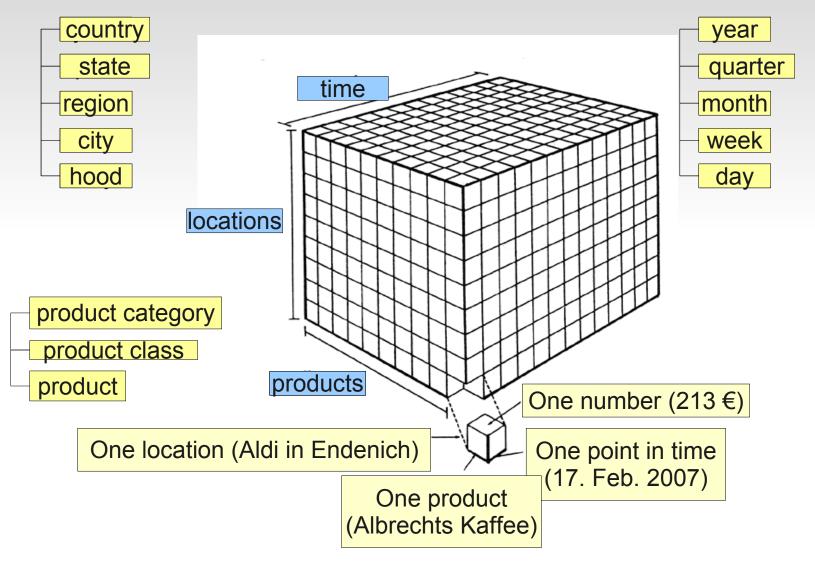
Normalverteilt

- Erwartungswert
- Standard Abweichung

Pareto Verteilung

"Power Law" <u>nicht</u>:"Macht Gesetz"

OLTP vs. OLAP vs. KDD


- Datenbanken (OLTP)
 - Transaktionen im Live System
 - Präzise Anfragen
- D-Warehouse (OLAP)
 - Historische Daten zur Analyse
 - Data Cube
 - Interaktiv

- Knowledge Discovery
 - Umfassende Datenanalyse
 - Data Mining
 - Unklarer Ausgang
- Unterschied:
 - Weiss ich was ich will?

Data Warehousing

- Sammelt Daten aus verschiedenen OLTP Datenbanken
- Historische Daten
 - Beinhaltet auch alte Versionen, nicht nur gegenwärtigen Zustand
- Daten müssen transformiert und angepasst werden
 - Data Cleaning and Transformation

OLAP

OLAP

- Pivot Table
 - Friere Dimension ein: Produkte
 - Wähle: Kaffee

	09-01-13	09-01-14	09-01-15	Sum
Endenich	43€	65€	57€	165€
Kessenich	12€	28€	21€	61€
Beul	32€	42€	12€	86€
Summe	87€	135€	90€	312€

- Roll-Up / Drill Down
- Slice / Dice
- Rotate

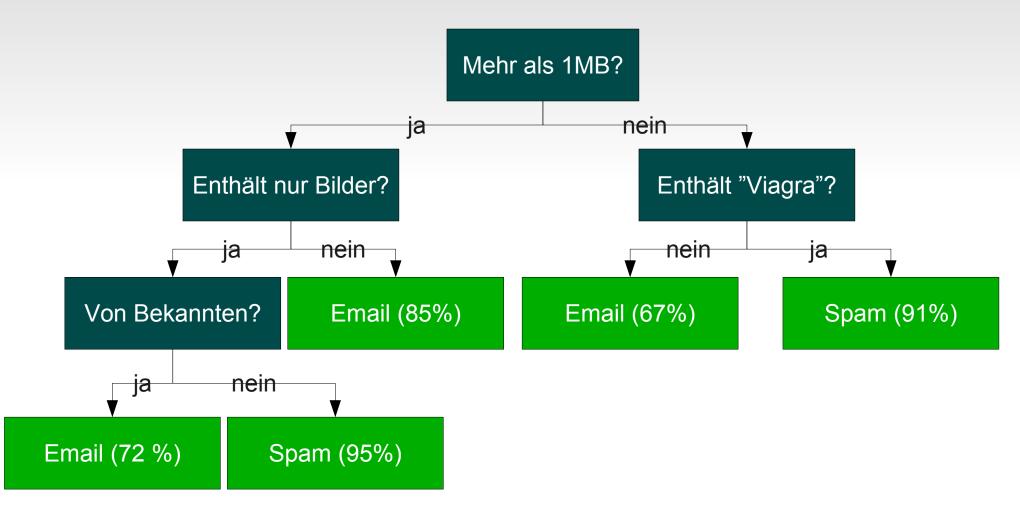
Data Mining

- Menge an Grundlegenden Methoden
- Unterscheiden sich im inneren
- Passen unterschiedlich gut fuer spezielle Daten

- Classification
 - Supervised
 - Unsupervised
 - Clustering
- Regression
- Association Rule Mining

Classification

- Gegeben:
 - Eine Menge Datensätze
 - Eine Menge Labels
- Entscheide für jeden Datensatz, welches Label wohl zutrifft
- Supervised: es gibt ein Training und Test-Set
- Unsupervised: keine vorkategorisierten Beispiele


Beispiele für Classification

- Spam
- Kreditwürdig
- Konsumer-Klasse
- Jede Art von Verhaltens-Klassen

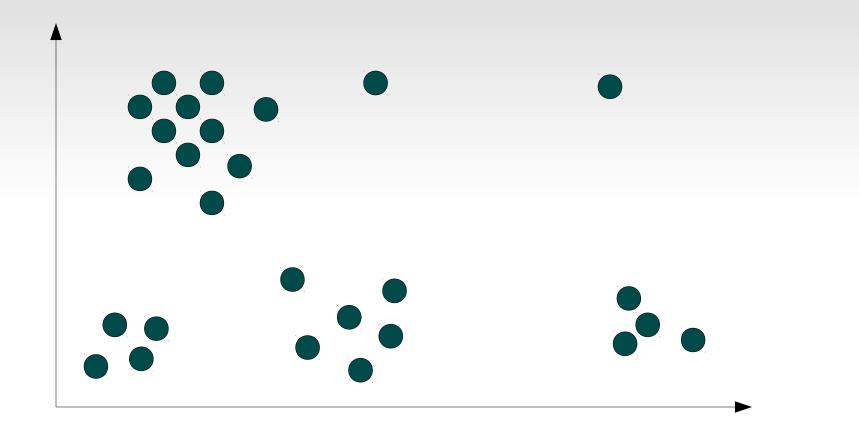
Decision Trees

- Simpleste Methode der Klassifikation
- Baumform
 - Wurzel = Anfang
 - Innere Knoten = Fragen
 - Blätter = Klassen
- Kann von Hand gebaut werden
- Oder Ergebnis eines Machine Learning Algorithmus sein

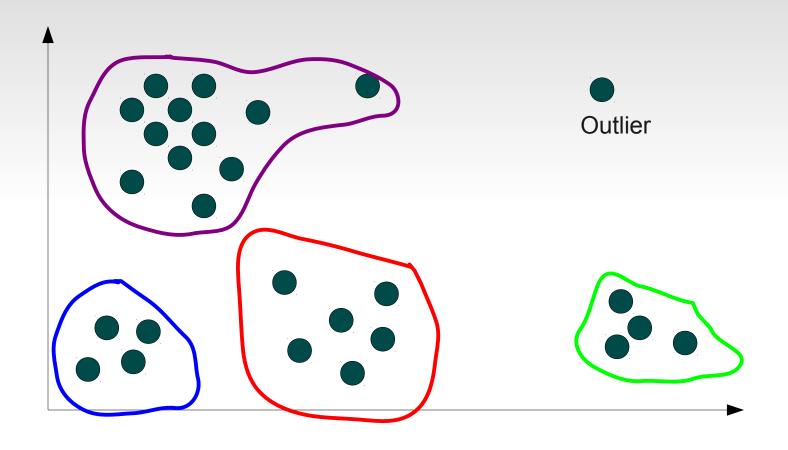
Beispiel Decision Tree

Overfitting

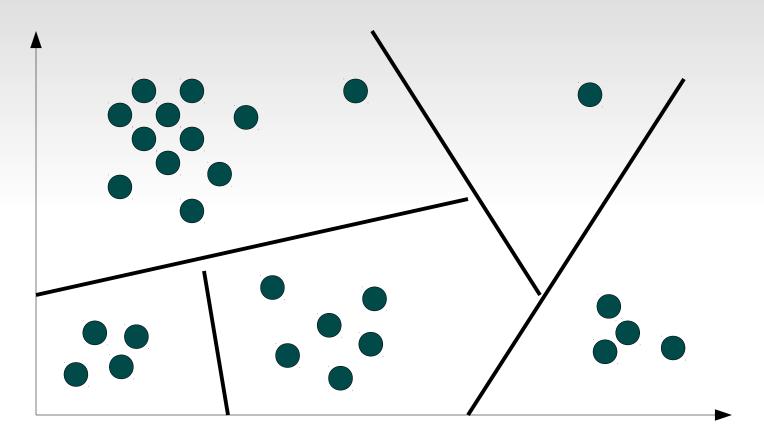
- Regeln werden zu genau trainiert
- Nicht generell genug:
 - Juniorprofessor?
 - Bonn?
 - Informatik?
 - Datenbanken?
 - Dann magst du gerne Pilzesuchen....
 - Und der n\u00e4chste Juniorprofessor der kommt?


Supervised Learning Algorithmen

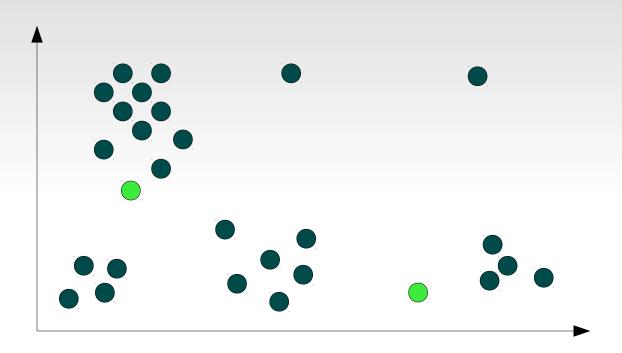
- Entscheidungsbäume und Regressionsbäume
- Neuronale Netzwerke
- Support-Vector-Maschine
- Genetische Algorithmen
- Statistische Modellierung z. B. Naive Bayes
- Viele Anwendungen in Biologie, etc.
- Meist als Black Box


Clustering & Outlier

- Punkte im mehrdimensionalen Raum
 - Nicht notwendigerweise Raum/Zeit
 - Z. Bsp.: Alter, Einkommen, Kreditlinie, Kinder
- Automatisches Aufteilen in sinnvolle Regionen
- Müssen noch interpretiert werden
- Outlier: Daten die zu keinem Cluster passen
 - Können Müll sein,
 - oder sehr interessant


Bsp.: Clustering & Outlier

Bsp.: Clustering & Outlier



Bsp.: Clustering & Outlier

- Voronoi Diagramm um Cluster
- Neuer Punkt: zu Cluster in dessen Zelle er liegt

K-Nächster-Nachbar

- Keine fixen Cluster
- Neuer Punkt, ähnlich seinen k-nächsten Nachbarn
- Nur in niederdimensionalen Räumen

Regression

- Ähnlich Classification
- Bildet aber nicht in diskrete Label ab
- Sondern in einen kontinuierlichen Zahlenraum
 - z. B. Von Alter, Einkommen, Kinder etc.
 - Auf die Wahrscheinlichkeit (in %) an Kehlkopfkrebs zu erkranken

Association Rules

- Market Basked Analysis
- Finde Regeln der Sorte
 - (Brot, Milch) \Rightarrow Bier
- Die meistens gelten (Confidence)
- Und relativ häufig sind (Support)
- Der Ebay Algorithmus
 - Fragen Sie Pat Robertson

Association Rules

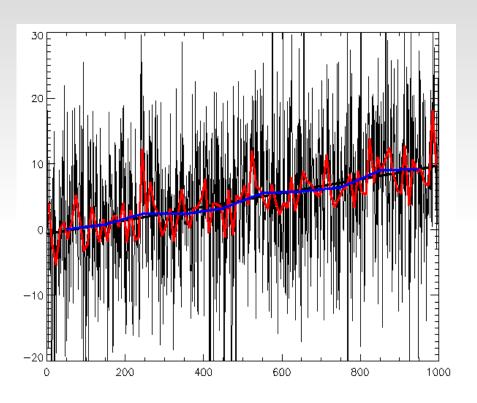
- Gegeben ein Set an Objekten S
- Und eine Menge an Teilmengen x_i
- $\mathbf{x}_{i} \subset S$
- S = alle Produkte im Supermarkt
- Und jedes x_i ist ein voller Einkaufkorb
- Finde Teil-Menge and Produkten s ∈ S, die regelmaessig zusammen in einem Korb landen

Association Rules

- {a, b, c}
- {a, b, c}
- {a, b, f}
- {a, f}
- {b, c}
- {b, c, d}
- {b, d}
- $\{c, f\}$
- {e, f}
- {e, f}

- Support supp(X):Anteil der
 - Transaktionen, die
 - X enhält
- Konfidenz: $conf(X \Rightarrow$

$$Y) = supp(X \cup Y) /$$


supp(X)

Teil aller Trans. die

X enthalten, die

dann auch Y haben

Zeitreihen

- Untersuche Trends in historischen Daten
- Besonders für Aktienanalyse
- Suche Muster
- Suche ähnliche Serien
- etc.

Social Networks

- Facebook
- Email/Telephon Verkehr
- Graph Struktur

- Wenn ich das und das über deine Freunde weiss
- Was weiss ich über dich?

Textmining

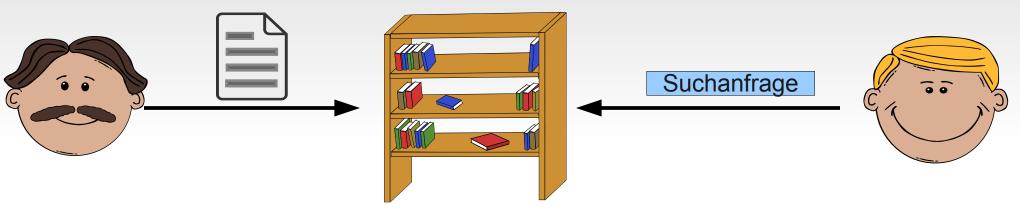
- Versucht Texte
 - Zu klassifizieren
 - Zusammenzufassen
 - Ähnliche Texte zu finden
 - Trends zu finden
 - Etc.

Visual Data Mining

- Graphisches Interface
- Interaktiv
- Ähnlich zum interaktiven OLAP
- Breites Feld
- Sehr Anwendungsorientiert

Fazit Data Mining

- Findet Regelmässigkeiten (Rules)
- Und auffällige Datensätze (Outliers)
- Halb-manueller Prozess
- Ergebnisse müssen interpretiert werden
- Sehr beliebt in Wirtschaft, Banken, Biologie, Soziologie, etc.
- Können aber auch benutzt werden um komplexe Regeln zu automatisieren (via Klassifikation)


And now for something completely different

Suchmaschinen

Information Retrieval

- Wie baue ich eine Suchmaschine?
- Gegeben
 - Eine Menge an Dokumenten geschrieben von Menschen
 - Einen Benutzer mit Informationsbedarf
- Gebe dem Benutzer das bestmögliche Dokument

Information Retrieval

- Was will uns der Autor sagen?
- Was sucht der Benutzer wirklich?
- Modelliere Probleme der Psychologie und Soziologie
- Simple und schnell berechenbar

Einfachstes Modell

- Wenn ein Autor über Mäuse schreibt verwendet er das Wort "Maus"
- Wenn ein Benutzer etwas über Mäuse sucht verwendet er das Keywort "Maus"

Inverted Index

- Speichert f
 ür jeden Term eine Liste von Dokumenten, die den Term enthalten
- Berechne Queries mit mehrern Keywords durch Schnittmenge von Listen

ndex	Alex	2	6	9	12	37	45	46	90
	Bonn	2	3	7	9	13	45	46	112
	Bonus								

Anfrage

Alex & Bonn	2	9	45	46
-------------	---	---	----	----

Ranking

- Das einfache Anfragemodell funktioniert einigermassen gut
- Aber, für die meisten Anfragen gibt es viiiiel zu viele Dokumente zurück
- Der Benutzer wünscht die besten Dokumente zuerst
- Reihenfolge wichtig!

Term Frequency

- Annahme: Verwendet der Autor ein Wort häufig, so will er wirklich über dieses Thema schreiben
- Schlussfolgerung: Wenn das Suchwort häufiger vorkommt, ist das Dokument wichtiger

 Aber, lange Dokumente müssen bestraft werden (Normalisierung über Dokumentenlänge)

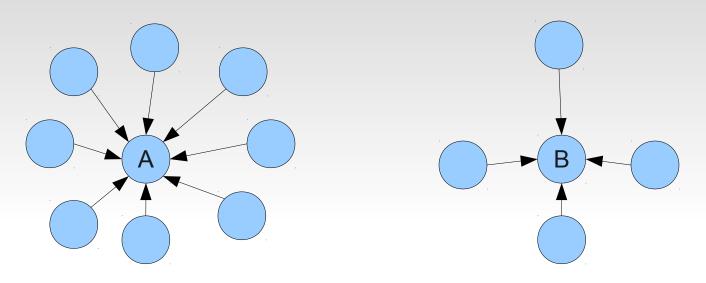
Term Frequency

- Folgende Saetze sind f
 ür das Query "alex, bonn" nach Wichtigkeit gerankt.
- Alex wohnt in Bonn, gleich bei der Uni Bonn
- Alex wohnt in Bonn, gleich bei dem Uni Campus
- Alex wohnt in Bonn, nicht weit von dem Kloster und findet es da ganz dufte, obwohl ihm Hessen manchmal fehlt, laberrhabarber.....

Inverse Document Frequency - Anfrage "Auto, Schleudersitz"

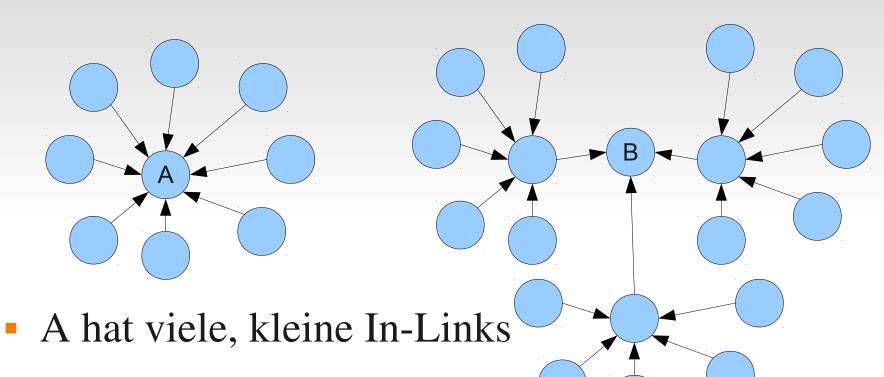
- Welches Dokument ist wichtiger?
- Dok. A enthält 3 * Auto und 1 * Schleudersitz
- Dok. B enthält 1 * Auto und 3 * Schleudersitz

- Annahme: Seltene Terme sind aussagekräftiger
- Folgerung: Dokument B ist besser, denn "Schleudersitz" taucht in weniger Dokumenten auf


TF-IDF

- i = ID-Nummer des Dokumentes
- t = Term aus der Anfrage (Schleudersitz)
- D = Menge aller Dokumente

$$\mathrm{tf}_{\mathrm{i},\mathrm{j}} = \frac{n_{i,j}}{\sum_{k} n_{k,j}} \qquad _{\mathrm{idf}_{\mathrm{i}} = \log \frac{|D|}{|\{d:\, t_{i} \in d\}|}} \qquad (\mathrm{tf\text{-}idf})_{\mathrm{i},\mathrm{j}} = \mathrm{tf}_{\mathrm{i},\mathrm{j}} \times \mathrm{idf}_{\mathrm{i}}$$


- Problem: Es ist sehr leicht "falsche" Dokumente zu erzeugen: Web-Spam
 - Billig autos billig autos billig autos

In-Links

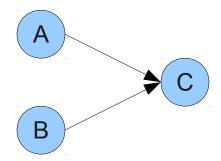
- Aus Bibliothekswissenschaften (Zitateindex)
- Idee: Anzahl der In-Links verweist auf wichtige Webseiten
- Problem: leicht zu verwirren (Linkfarmen)

PageRank

- B hat weniger, aber wichtige In-Links
- Wahrscheinlich ist B wichtiger

Sergey Brin, Larry Page "The Anatomy of a Large-Scale Hypertextual Web Search Engine" 1998

PageRank


- Der "Google-Algorithmus"
- Rekursive Definition: ein Knoten eines Graphen ist wichtig, wenn seine In-Links wichtig sind
- Findet "wichtige" Knoten in einem Graphen
- Random-Walk Modell
 - Wahrscheinlichkeit bei einem blinden Graph-Durchlauf auf einem Knoten zu landen
- Simpel und effizient zu berechnen
 - Eigenwerte bestimmen (Matrix-Multiplikation)
- Anwendung in vielen Gebieten (Biologie, etc.)

Noch mehr Links

- Citation
- Wenn A zu B zeigt, sind A und B ähnlich

- Co-Citation (Triangular Closure)
- Wenn A und B zu C zeigen, sind A und B ähnlich

Social Network Analysis

- Sozialer Netzwerke
 - Facebook
 - Email-Verkehr
- Modelliert als Graph
- Citation, Co-Citation
- Pagerank
- Grundlage f
 ür ausgepr
 ägtes Data Mining
 - Beispiel: MIT Gaydar....

Suchmaschinen 2000

- Viele Orthogonale Probleme
 - Suchen auf speziellen Dokumenten (Blogs, etc.)
 - Geographische Suche
 - Spam Detection
 - Multimedia Inhalte (Photos, Videos, Musik)

Das Grosse Problem bleibt: Wie macht man fundamentale Suche besser?

Nutzerverhalten

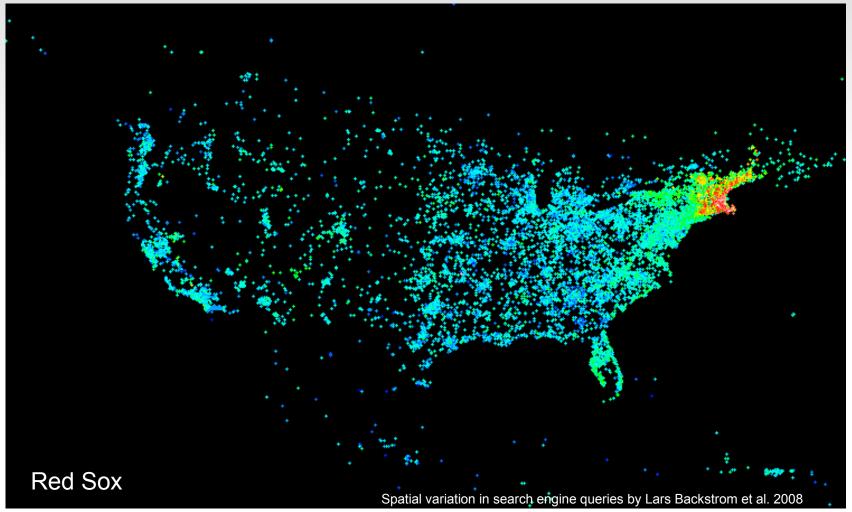
- Bisheriges Modell unersucht ausschliesslich Dokumente (den Kopf des Autors)
- Idee: Analysiere Verhalten der Benutzer
 - Welche Anfragen hat er gestellt
 - Welche Seiten hat er besucht
- Gespeichert in sogenannten Query Logs
- Abhängig von der konkreten Anwendung

Nutzerverhalten

 Gewinne Informationen über Dokumente aus dem Nutzerverhalten

- Gewinne Informationen über Benutzer aus dessen Verhalten
 - Vorzüge & Bedürfnisse

Ähnlich dem Publikumsjoker bei Günther Jauch


Klassifizieren von Dokumente

- Nutzer sucht nach "Auto, Schleudersitz" und besucht dann www.xyz.com/modification.htm
- Chancen sind ziemlich gut:
 - Diese Webseite hatt etwas mit Autos und/oder Schleudersitzen zu tun
- Für Webseiten, die selber wenig Text enthalten

Geographische Verortung von Anfragen • Über IP-Addressen kann man herausfinden, wo

- Uber IP-Addressen kann man herausfinden, wo ein Benutzer sich befinde (+/- 100km)
- Bestimmte Queries kommen offensichtlich aus verschiedenen Regionen
- Terme sind auf Regionen fokusiert
- Googles Grippe Vorhersage

Geographische Verortung von Queries

Geographische Verortung von Queries

Klassisches Beispiel

- Nutzer sucht nach "Jaguar", meint er:
 - Kätzchen
 - Auto
 - Spielkonsole ?
- Keine Ahnung, am besten gebe ich ihm ein paar Seiten zu jedem Thema

Und wenn Ich mehr über den Nutzer wüsste? Personalized Search

- Letztbesuchte Seite:
 - gebrauchtwagen.de
- Letzte Suchanfragen:
 - Leopard
 - Grassteppe
- (G-Mail) E-Mails über
 - Nintendo und Sega
- Bonner

- Versuch, dem Nutzer in den Kopf zu schauen
- Bessere Ergebnisse

Online Werbung

- Schaue in den Kopf von Nutzern
- Empfehle erfolgreiche Werbung
- Harmlos ... vielleicht

- Big business
- Yahoo \$680 Million für RightMedia
- Google \$3.1
 Milliarden für DoubleClick
- Microsoft zahlt \$6
 Milliarden für
 aQuantive

Big Picture

- Mit gesammelten
 Daten können wir:
 - Webseiten empfehlen
 - Werbung einblenden
 - • •

- Automatisierung von Entscheidungen
 - Welche Seite?
 - Welche Werbung?
- Billig
- Wenn was schiefgeht?Egal...

Big Picture

- Web als Epi-Zentrum des Datensammelns
 - Daher die Einführung in IR
- Zusammenschalten unzähliger Datenquellen
 - Rasterfahndung

- Web besteht nicht nur aus Dokumenten
- Sondern speichert die "Virtuelle Welt"

 Noch ganz andere Entscheidungen lassen sich automatisieren...

Nach der Pause

- Datenschutz als sozialer Umweltschutz
- Automatisierte Entscheidungen
- Case Studies
 - Amazon
 - Facebook
 - Gmail
 - World of Warcraft
 - Google Streetview

Pause

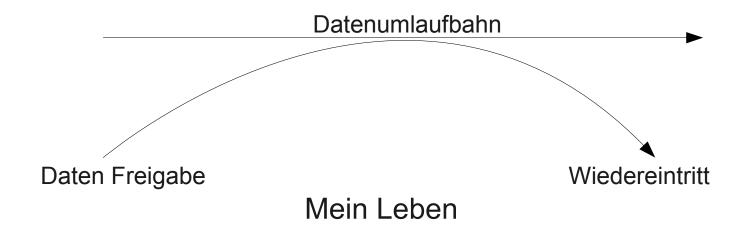
Weiter Geht's

- Datenschutz als sozialer Umweltschutz
- Automatisierte Entscheidungen
- Bei-Spiele

Datenschutz als sozialer Umweltschutz

- Einzelne hat nur begrenzt Einfluss
 - Gift des Nachbarn verseucht auch meinen Garten
 - Daten des Nachbarn erschweren auch mein Leben
 - Erfordert gesellschaftliche Lösung
- Eigene Parteien
- Staatliche Umweltzerstörung bis ca 1970, dann radikale(?) Kehrtwende
- Staatliches Datensammeln, bis ca 20xx ...

Name & Vision


Sind leider beide falsch gewählt

Wir müssen Menschen schützen, nicht Daten

- Es geht nicht um ein übersteigertes Interesse an der einzelnen Person (Orwell)
- Sondern um ein Desinteresse an dem Einzelnen
 - Kafka & Huxley

Datenbalistik

- Freigegebene Daten sind nicht rückrufbar
- Relevant: Konsequenzen im realen Leben

Menschen sind zu teuer

- Und müssen wegrationalisert werden...
- Industrialisierung seit 1850
- Industrie-Roboter seit 1950
- Jetzt auch im Krieg

- Ersetzen menschliche Arbeitskraft
 - Zunächst rudimentär
 - Dann immer besser

Selbst Denken ist zu teuer

- Entscheidungen kosten Geld
- Und werden daher automatisiert
- Zunächst rudimentär:
 - Standard Operating Procedures
 - "It's our policy..."
- Erlaubt billigere Arbeitskräfte
 - McDonalds für Entscheidungen

Fehler Einkalkuliert

- Statistischer Ansatz
 - Meistens klappts
- Fehler sind einkalkuliert und erlaubt
 - Solange sie nicht zu zahlreich sind
 - Einzelfall statistisch irrelevant
- Management by Numbers
 - US Army Body Counts
 - Guiliani's New York

Moderne IT

- Voll-Automatisierung von Entscheidungen
- Rating & Scoring
- Nicht zwangsweise schlechter als Menschen
 - Erste Credit Rating

- Beispiele:
 - Jobangebot
 - Schulzweig
 - Vergabe eines Kredites
 - Aufnahme in eine Versicherung
 - Betreten eines Flugzeuges

Amazon

- Gekaufte Produkte
- Gewünschte Produkte
- Geschenkte Produkte
- Angesehene Produkte

- Der Kunde bekommt bessere Produkte empfohlen
- Und hat mehr Zeit für seine Familie...

Facebook

- Hobbies
- Musikgeschmack
- TV-Serien & Filme
- Job
- Uniabschluss
- Beliebtheit

- Gelesene Bücher
- Sexuelle Orientierung
- Auch implizit:
 - Messages
 - Freundeskreis
- Arbeitseinsatz
- Stressprofil

Gmail

- Mit wem rede ich?
- Wie oft?
- Über was?

- Wenige Features
- Aber Grundlage reichhaltiger abgeleiteter Informationen

World of Warcraft

- Spielverhalten
- Wann?
- Wie oft?
- Mit wem?
- Sozialverhalten
 - Gilden
 - Freunde
 - • •

- Bewegung im 3DRaum
- Spielstrategien
- Rollen

- Text (aus Chats)
 - Uninteressant:Orks & Elfen

Google Streetview

- AbfotografierteStrassenzüge
- Und WLAN Namen

- Wieso?
- Was geht damit noch?

Und aus Sicht des Nutzers?

Entscheidungen betreffen direkte vitale Interessen

- Statistik ist irrelevant
- Nur der Einzelfall zählt

- Egal ob Entscheidungen richtig oder falsch sind
- Egal ob aufgrund richtiger oder falscher Daten

Fehler? Dein Problem!

- Keine Einspruchsmöglichkeiten
 - Zu teuer
 - Oder rufen Sie mich an: 0190 ...
 - Datenlage ist geheim
 - Entscheidungslogik ist geheim
 - Alles top secret, völlig geheim, gibt es gar nicht...
- Willkommen in Kafkas "Prozess"

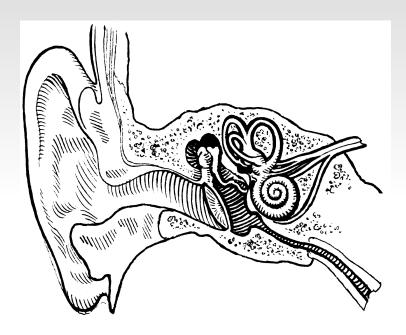
Das Korsett

- Entscheidungsfreiheit radikal eingeschränkt
 - Aufgrund von Daten
- Huxley's "Brave New World"
 - Vorgegebene Lebenswege
 - Alpha und Beta Menschen nicht gezüchtet
 - Sondern aufgrund der Datenlage aussortiert
 - Nicht notwendigerweise eigene Daten

Entscheidungen aber ...

- Begründen das Mensch-sein
- Gesamte Christliche Ethik basiert auf "Umkehr"
 - Fundamentalen Entscheidungen
- Selbst das StGB kennt Verjährung und Löschung
 - Um Entscheidungen zu erlauben

- Stattdessen, wird der Mensch zum Ding
 - Barcode in der Armbeuge


Und nun?

- Erneuerung des gesamten Datenschutzes
 - Zielführend, ersetzt derzeitiges Patchwork

- Dringend gesellschftlicher Diskurs über Ziele
- Besonders über Automatisierte Entscheidungen

Und bis dahin erstmal: Angst haben....

Vielen Dank

Thank you for listening

Literatur

- Jiawei Han, Micheline Kamber, Jian Pei
 Data Mining: Concepts and Techniques
 Morgan Kaufmann; 2nd ed. 2005
- Ian H. Witten, Eibe Frank
 Data Mining: Practical Machine Learning Tools and Techniques
 Morgan Kaufmann, 2rd ed. 2005
- Thomas Mitchell
 Machine Learning
 McGraw Hill, 1997

Literatur

- Soumen Chakrabarti
 - Mining the Web
 - Discovering Knowledge from Hypertext Data Morgan-Kaufmann Publishers 2002
- Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze Introduction to Information Retrieval Cambridge University Press. 2008. (Preprint on the Web)
- D. Easley, J. Kleinberg

Networks, Crowds, and Markets: Reasoning About a Highly Connected World

To be published by Cambridge University Press, 2010. (Preprint on the Web)

Literatur

Stephen Baker
 The Numerati
 Mariner Books, 2009

Peter Schaar

Das Ende der Privatsphäre: Der Weg in die Überwachungsgesellschaft C. Bertelsmann, 2007

Was ich sonst so treibe

- Code Search
- Online Spiele
- Mensch Zwo-Null

Code Suche

- Suchmaschine f
 ür Programmcode
- Wenig Wörter
- Viel Struktur
- Mit Uni Warschau

Mensch 2.0

- 2009-10 Datenschutz
- Mit Prof. Joachim von zur Gathen
- Prof. Dr. Klaus Brunnstein, Hamburg
- Gerhart Baum, Bundesminister a.D.
- padeluun
- Peter Schaar, Bundesdatenschutzbeauftragter
- Prof. Dr. Knut Wenzel, Frankfurt

Mensch 2.0

- 2010-11 Psychosoziale Nachbeben der Internetrevolution
- Schrumpfende Aufmerksamkeitsspannen
- Burnout
- Over-Multitasking
- Virtuelle Freundschaften und Beziehungen
- Sucht und Zwangsverhalten
- Etc. etc.

Nochmals vielen Dank

Nu ist aber wirklich gut...